Trigonometry Graphing Trig Functions: Amplitude, Period and Phase Shift

<u>Terminology</u>

Parent		
Function	You should be familiar with	the Parent Functions of the trig graphs.
	$y = \sin \theta$	$y = \csc \theta$
	$y = \cos \theta$	$y = \sec \theta$
	$y = \tan \theta$	$y = \cot \theta$
Transformed		
Function	For the purpose of this lesson, we will use the following model to disc the transformation of parent trig functions. (The sine function can be	
	replaced by any of the other	trig functions.)
	$y = a\sin(b\theta +$	(c) + d
Amplitude	Amplitude is the absolute vacuum $\cos \theta$ from equilibrium. The at equilibrium at y = 0 and the minimum y-values of -1. The minimum y-values of -1.	applied to the sine and cosine graphs. lue of the maximum displacement of $\sin\theta$ or e parent functions of sine and cosine are both ney both achieve maximum y-values of 1 and ne amplitudes of $y = \sin\theta$ and $y = \cos\theta$ are 1. rever, when a coefficient is multiplied by the
	In the function $y = a\sin(b\theta +$	$(-c) + d$, the AMPLITUDE = $ \mathbf{a} $.
Period	function. The parent function periods of 360° or 2π radians have periods of 180° or π radi	at. The period is the length of one cycle of a ns of sine, cosine, secant & cosecant have s. The parent functions of tangent & cotangent dians. The length of the period changes, is multiplied by θ in the trig function.
	In the function $y = a \sin(b\theta + t)$ (<i>This is also true for cos, see</i>	$(-c) + d$, the PERIOD = $\frac{360^{\circ}}{b}$ or $\frac{2\pi}{b}$.
	111113 13 1130 11 11e JUI COS, SEC	a (s).)
	In the function $y = a \tan(b\theta - b\theta)$	$(+ c) + d$, the PERIOD = $\frac{180^{\circ}}{b}$ or $\frac{\pi}{b}$.
	(This is also true for cot.)	

Phase Shift	Phase shift is the translation of a trig function to the left or right. The parent functions, sin, cos, tan, etc., are not shifted. A phase shift is applied when a constant is added inside the trig function.	
	In the function $y = a\sin(b\theta + c) + d$, the PHASE SHIFT $= -\frac{c}{b}$.	
	(This is also true for the other five trig functions.)	
	Note: If $c > 0$, then the shift is to the left. If $c < 0$, then the shift is to the right.	
Vertical Shift	Vertical Shift is the translation of a trig function up or down. The parent functions, sin, cos, tan, etc., are not shifted. A vertical shift is applied when a constant is added outside the trig function.	
	In the function $y = a\sin(b\theta + c) + d$, the VERTICAL SHIFT = d . (<i>This is also true for the other five trig functions.</i>)	

Other Transformations

Vertical Reflection	A vertical reflection is when the graph is reflected across the x-axis, like a mirror image being flipped upside-down. This happens when the coefficient ' a ' is negative.
Horizontal Reflection	A horizontal reflection is when the graph is reflected across the y-axis, flipping the graph left-right. This happens when the coefficient ' b ' is negative.

Multiple Transformations in One Function

One trig function is likely to have more than one transformation being applied at a time. Consider each transformation one step at a time to determine the overall changes to the parent graph:

Example For the function $y = 4 \sin(2\theta + 90^\circ) - 6$: $a = 4, b = 2, c = 90^\circ, d = -6$ the amplitude is 4, the period is $\frac{360^\circ}{2} = 180^\circ$, the phase shift is $-\frac{90^\circ}{2} = -45^\circ$ (a shift to the left), the vertical shift is -6. Example For the function $y = 4 \tan\left(\frac{\theta}{2} - \frac{\pi}{2}\right)$:

ample For the function
$$y = 4 \tan\left(\frac{\theta}{4} - \frac{\pi}{6}\right)$$
:
 $a = 4, b = \frac{1}{4}, c = -\frac{\pi}{6}, d = 0$
there is no amplitude, tangent increases

there is no amplitude, tangent increases and decreases without bound, the period is $\frac{\pi}{\frac{1}{4}} = \pi \cdot \frac{4}{1} = 4\pi$, the phase shift is $-\frac{-\frac{\pi}{6}}{\frac{1}{4}} = \frac{\pi}{6} \cdot \frac{4}{1} = \frac{2\pi}{3}$ (a shift to the right), the vertical shift is 0.

Example For the function $y = -3\cos\left(\theta - \frac{\pi}{2}\right) + 1$: $a = -3, b = 1, c = -\frac{\pi}{2}, d = 1$ the amplitude is 3, the period is $\frac{2\pi}{1} = 2\pi$, $-\frac{\pi}{2} = \pi - \pi$

the phase shift is $-\frac{-\frac{\pi}{2}}{1} = \frac{\pi}{2} = \frac{\pi}{2}$ (a shift to the right), the vertical shift is 1.

This graph is also reflected vertically since a = -3.

Try These

- 1. State the amplitude, period, phase shift and vertical shift for each of the following.
 - a) $y = 3\cos(3\theta) + 1$ b) $y = -5\sin(6\theta)$ c) $y = 4\tan(2\theta - \pi)$ d) $y = 24\sec(2\theta + 150^\circ)$ e) $y = -3\cot\left(\frac{\theta}{4} + \frac{\pi}{8}\right)$
- 2. Write an equation of a sine function with amplitude 3, period 720°, and phase shift 90° (to the right).
- 3. Write an equation of a tangent function with period 2π and phase shift of $-\frac{\pi}{4}$ (to the left).