Trigonometry
Graphing Trig Functions: Trig Parent Graphs - Activity

A. Tabular Data

Use your calculator to fill in the table below with the values of sine and cosine for each angle. Give each answer to the nearest tenth:

θ	$\sin \theta$	$\cos \theta$
$0,0^{\circ}$		
$\pi / 6,30^{\circ}$		
$\pi / 4,45^{\circ}$		
$\pi / 3,60^{\circ}$		
$\pi / 2,90^{\circ}$		
$2 \pi / 3,120^{\circ}$		
$3 \pi / 4,135^{\circ}$		
$5 \pi / 6,150^{\circ}$		
$\pi, 180^{\circ}$		
$7 \pi / 6,210^{\circ}$		
$5 \pi / 4,225^{\circ}$		
$4 \pi / 3,240^{\circ}$		
$3 \pi / 2,270^{\circ}$		
$5 \pi / 3,300^{\circ}$		
$7 \pi / 4,315^{\circ}$		
$11 \pi / 6,330^{\circ}$		
$2 \pi, 360^{\circ}$		

What is the lowest value of $\sin x$; the highest value of $\sin x$? \qquad
What is the lowest value of $\cos x$; the highest value of $\cos x$? \qquad
What will happen if you continue the table past 2π or $360^{\circ} ?$ \qquad
\qquad

Use your calculator to fill in the table below with the values of tangent for each angle. Give each answer to the nearest tenth:

θ	$\tan \theta$	θ	$\tan \theta$
$0,0^{\circ}$		$\pi, 180^{\circ}$	
$\pi / 6,30^{\circ}$		$7 \pi / 6,210^{\circ}$	
$\pi / 4,45^{\circ}$		$5 \pi / 4,225^{\circ}$	
$\pi / 3,60^{\circ}$		$4 \pi / 3,240^{\circ}$	
70°		250°	
75°		255°	
80°		260°	
85°		$265{ }^{\circ}$	
89°		$269{ }^{\circ}$	
$\pi / 2,90^{\circ}$		$3 \pi / 2,270^{\circ}$	
91°		$271{ }^{\circ}$	
95°		$275{ }^{\circ}$	
100°		280°	
105°		$285{ }^{\circ}$	
110°		290°	
$2 \pi / 3,120^{\circ}$		$5 \pi / 3,300^{\circ}$	
$3 \pi / 4,135^{\circ}$		$7 \pi / 4,315^{\circ}$	
$5 \pi / 6,150^{\circ}$		$11 \pi / 6,330^{\circ}$	
		$2 \pi, 360^{\circ}$	

For what values of θ is tangent undefined? \qquad
What happens as θ approaches these values? \qquad
\qquad

B. Graphing the Data

On the grids below, carefully scale the axes as follows:
The horizontal axis should go from $\theta=0$ to $2 \pi\left(360^{\circ}\right)$, intervals of $\pi / 12\left(15^{\circ}\right)$. The vertical axis should go from $y=-1$ to 1 , intervals of 0.1

1) Plot the points for $y=\sin \theta$ from the table.

- What happens after $\theta=2 \pi$?
- Can θ be less than 0 ? \qquad
- What is the domain of the function $\mathrm{y}=\sin \theta$?
- What is the range of the function $y=\sin \theta$? \qquad

2) Plot the points for $y=\cos \theta$ from the table.

- How does the graph of $y=\cos \theta$ compare to the graph of $y=\sin \theta$?

On the grid below, carefully scale the axes as follows:
The horizontal axis should go from $\theta=0$ to $2 \pi\left(360^{\circ}\right)$, intervals of $\pi / 12\left(15^{\circ}\right)$. The vertical axis should go from $y=-15$ to 15 , intervals of 1 .
3) Plot the points for $y=\tan \theta$ from the table.

- What happens when tangent is undefined? \qquad
- How often does this happen? \qquad
- Is there a limit to how large tangent can be? \qquad
- What is the domain of the function $y=\tan \theta$? \qquad
- What is the range of the function $y=\tan \theta$? \qquad

C. Essential Vocabulary

Periodic Function A function is periodic if, for some real number $\boldsymbol{a}, f(x+\alpha)=f(x)$ for each \boldsymbol{x} in the domain of f.

Period of a Function The least positive value of α for which $f(x)=f(x+\alpha)$ is the period of the function.

D. Graphs of the Other Three Trig Functions

The other three trig functions, $\sec x, \csc x$ and $\cot x$, also have periodic graphs. We could make table values for them, but let's use Sketchpad to demonstrate their graphs instead. Open the file "Trig_Graphs.gsp" (on the Trig website) and follow these directions.

* As you click on each trig function, click the button "SLOW" and watch as a point moves around the circle (the value of the angle θ is displayed on the screen in terms of π, the program only shows values of θ from $-\pi$ to π). As the point moves on the unit circle, its trig value is graphed to the right. Let's see them one at a time:
a) SINE

As the point moves around the circle, the value of SINE is shown as a red segment (the y -value of the point). Describe the shape of this graph.
b) COSINE

As the point moves around the circle, the value of COSINE is shown as a red segment (the x-value of the point). How is this different from the sine graph?
c) TANGENT

As the point moves around the circle, the value of TANGENT is shown as a blue segment. For what values of θ is cotangent undefined? How is this expressed on a graph? Describe the graph.
d) COTANGENT

As the point moves around the circle, the value of COTANGENT is shown as a blue segment. For what values of θ is cotangent undefined? How is this expressed on a graph? How is the graph of cotangent different from tangent?
e) COSECANT

As the point moves around the circle, the value of COSECANT is shown as a green segment. For what values of θ is cosecant undefined? How is this shown on the graph? Describe the graph. Remember, cosecant is the reciprocal of sine, do you see a connection between the two graphs?
f) SECANT

As the point moves around the circle, the value of COSECANT is shown as a green segment. For what values of θ is secant undefined? How is this shown on the graph? Describe the graph. Remember, secant is the reciprocal of cosine, do you see a connection between the two graphs?

E. Continue the Graphs

Some of these problems require you to graph more than one period. Scale the x -axis in intervals of $\pi / 6$ or 30°.
a) Graph the sine curve in the interval $-\pi \leq \theta \leq 2 \pi$.

b) Graph the tangent curve in the interval $-\pi \leq \theta \leq 2 \pi$.

c) Graph the cosine curve in the interval $0 \leq \theta \leq 4 \pi$.

d) Graph the secant curve in the interval $0 \leq \theta \leq 4 \pi$.

Summary

- The graphs of the 6 trig functions are all periodic, their values repeat at set intervals.
- The period of the graphs of SINE, COSINE, COSECANT and SECANT is 2π, that is to say that these graphs repeat their values every 2π radians.
- The period of the graphs of TANGENT and COTANGENT is π.
- The graphs of TANGENT, COTANGENT, COSECANT and SECANT all have vertical assymptotes because there are angles for which these trig functions are not defined.
- TANGENT is undefined when $=-\pi / 2, \pi / 2$, and every π afterwards.
- COTANGENT is undefined when $=-\pi, 0, \pi$, and every π afterwards.
- COSECANT is undefined when $=-\pi, 0, \pi$, and every π afterwards.
- SECANT is undefined when $=-\pi / 2, \pi / 2$, and every π afterwards.

